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The development of catalytic systems for direct functionalization
of sp® C—H bonds provides extremely important tools for contem-

porary chemistry. The success of such processes would provide

potentially economic and clean methods for constructing many
chemicals directly from hydrocarbons and their simple derivatives.

Currently, transition metal complexes have been widely tested to

activate sp C—H bonds for generation of new-&X bonds (X=

C, O, B, etc.)2However, simultaneous activation of two different
sp® C—H bonds in a one-pot process has been rarely repérted.
Herein we present a process in which two differestGpH bonds

were selectively activated under the same conditions to construct

a useful core structure.

The sg C—H bonds adjacent to amines are relatively activated
and can be functionalized with different reagents under special
conditions®®4 Li et al. demonstrated that Cu-based catalysts can
perform such function&42bThey can also be activated by low
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discovered transformation here may offer the most straightforward
route to synthesize aryl-substituted pyrroles.

After the discovery of this method to access aryl-substituted
pyrroles from commercially available phenethylamine, we system-

valent Ir complexes to form fused rings, as reported by Sames etatically tested different reaction conditions (Table 1). We found

al. very recently’¢ It is also well-known that the benzylic $g—H
bond is more reactive than generaf €p-H'’s in alkanes and can

be activated through several different pathwayge attempted to
activate the two different §pC—H bonds in phenethylaming.
Previously, Kindler and Murahashi have reported that diphenethyl-
amine can be produced by deamination of phenethylafiree
imine was assumed to be a key intermediate in the deamination o
phenethylamindathrough C-H bond activation at the-position

of the amino group. Surprisingly, during our screening efforts to
test different reaction conditions, we discovered a mysterious
product with a very simpléH NMR spectrum. This product was
produced when phenethylamifiawas treated with a stoichiometric
amount Cu(OAg) in the presence of a catalytic amount of Pd-
(OAc),. High-resolution mass spectroscopy indicated that the
molecular weight of this product was 323.16720, which fits the
formula of G4H,N well. The IR spectrum implied that the
compound contained a pyrrole ring as a core structure.

To further confirm the structure of the produptmethoxyphen-
ethylaminelb was employed as the starting material instead of
phenethylaminela, and a similar solid produ@b was produced
in a moderate isolated yield (Scheme 1). Single crystaafere
easily obtained by recrystallization in diethyl ether and petroleum
ether. The X-ray structure @b was determined (Scheme 1), which
indicated that the hypothesized structure of pyrrole pro@batas
correct. According to an extensive literature search, pyrrole is not
only a common structural unit in many materfatsit also one of
the more important structural motifs in numerous natural proflucts
and bioactive moleculés.For example, 1-phenethyl-3,4-diaryl
pyrrole2 is the key scaffold of lamellarin, a bioactive marine natural
product isolated fronprosobranch mollusc lamellarispl® The
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that (i) this transformation could take place in the presence of Cu-
(OAc), with lower efficiency (entries 1 and 2); (ii) Pd(Il) catalysts
other than Pd(OAg)can also promote this process in the presence
of Cu(OAc), while PdC} had the highest efficiency. However,
Pd(0) species, such as fba), decreased the efficiency of this
reaction. It is noteworthy that this transformation could not run

gsmoothly only in the presence of either a catalytic or stoichiometric

amount of Pd(ll) species (entries 8 and 9); (iii) other metal salts,
such as FeG] NiCl,, PtCh, etc., could not be employed as
promoters to replace the Pd(ll) species (Supporting Information
Table 1); (iv) in the presence of PdCbther common inorganic
oxidants, such as XCr,0O;, FeCk, etc., were not beneficial to the
reaction, and no produ@a was observed under these conditions
(Supporting Information Table 1). When 1.0 equiv of Cu(OAc)
and 5 mol % of PdGlwere used, the reaction proceeded in good
yield (42%) of 2a from 1a (entry 6). Increasing the quantity of
Cu(OAc), did not affect the efficiency of this transformation; in
contrast, the yield of pyrrole decreased slightly with the decrease
of the amount of Cu(OAg) Moreover, the yield did not change
much in the presence of either 5 or 10 mol % of PdE€inally,
when the temperature was increased to AG5with xylene as the
solvent, the reaction ran much faster and the efficiency of this
transformation increased slightly. However, longer reaction times
decreased the efficiency perhaps due to the decomposition of
product under these harsh conditions (entry 10).

To explore the application of this method, the scope of the
substrates was evaluated with a variety of substituted phenethyl-
amines (Table 2). Electron-donating groups increased the efficiency
of this transformation (entries27, Table 2). In contrast, electron-
withdrawing groups decreased the yields (entried®, Table 2),
indicating that the reactivity of the $€—H at the benzylic position
was affected by electronic effects from the substituents on the
phenyl ring. It was important to note that theé §p-H bond of the
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Table 1. Deprotonation/Deamination of 1a under Different
Conditions?@
Ph Ph
Ph/\/NH2 [Pd], Cu salt ji/\N_/—
toluene, 115°C, 16 h Ph =
1a 2a
entry [Pd] (mol%) Cu salt (equiv) 2a (%)b
1 - Cu(OAc), (1.0) 22
2 - Cu(OAc), (2.0) 18
3 Pd(OAc), (5) Cu(OAc), (1.0) 34
4 Pd(dba), (2.5) Cu(OAc), (1.0) 16
5 Pd(CH3CN),Cl> (5) Cu(OAc), (1.0) 38
6 Pd(PhCN),.ChL (5) Cu(OAc), (1.0) 37
7 PdCl, (5) Cu(OAc), (1.0) 42
8 PdCl, (5 or 100) - <5
9 Pd(OAc), (100) - 11
10 PdCl; (5) Cu(OAc), (0.5) 38
11 PdCl; (5) Cu(OAc), (2.0) 41
12°¢ PdCl, (5) Cu(OAc), (1.0) 46

a All reactions were carried out in the scale of 1.0 mmol in 4 mL of toluene
unless otherwise note#llsolated yield ¢ The reaction was carried out in xylenes
at 155°C for 4 h.

Table 2. Syntheses of Pyrroles from Commercially Available
Phenethylamines?

PdCl, (5 mol%)

Cu(OA), (1.0 equiv Ar Ar

Ar/\/NHz (solvc)ezng, reﬂuqx ) j:N_/_
1 Ar 2

entry 1 Ar 2 yield (%)°
¢ 1a CeHs 2a 46
29 1b p-CHzOCgH, 2b 51
39 1c 0-CH30C4H, 2c 64
49 1d p-CH3CgH,4 2d 48
59 1e m-CH3CgH, 2e 45
67 Af 0-CH3CgHy4 2f 62
7 Mg 2,5-(CHs),CeHs 29 71
8  1h p-FCgH, 2h 41
9° 1 m-FCgH, 2i 31
10 1 m-CF3CgHy4 2j 40
115 1a CeHs 2a 38

a All reactions were carried out in the scale of 1.0 mmol in 5.0 mol % of
PdCL and 1.0 equiv of Cu(OAg)in 4 mL of toluene unless otherwise noted,
and starting material was completely consumed. Prodkietere accompanied
by varying amounts of highly polar byproductdsolated yield. The reaction
was carried out in xylenes at 188 for 4 h.d The reactions were carried out in
toluene at 118C for 16 h.e This reaction was carried out in the scale of 10.0
mmol.

benzylic methyl group was not activated under these conditions
(entries 47, Table 2). Furthermore, fluoro-substituted phenethyl-
amines Lh and1i) were also employed as substrates, and products
were isolated with the original €F bond on the phenyl ring
untouched (entries 8 and 9, Table 2). The lower yields in these
reactions may be due to the electron-withdrawing effect of the fluoro
substituent. It is noteworthy that steric effects from the ortho
substituents on the phenethylamine did not play an important role,

and the corresponding products were obtained in moderate to good

yields (entries 3, 6, and 7, Table 2). Moreover, high temperature
increased the efficiency of this transformation slightly when

phenethylamines, which contained electron-deficient groups on the
phenyl ring, were used as the starting materials. In contrast, lower

efficiency was observed with electron-rich phenethylamines as

substrates at higher temperature (Supporting Information Table 2).

During this process, small amounts of benzyl nitrile and
phenethylN-acetamide were observed as byproducts. However,
neither of these compounds could serve as substrates for this
transformation. Thus, they were excluded as intermediates during

this process. Furthermore, starting from 2-(4-methoxypheXyl)-
(2-phenylethylidene)ethanamine gmehethoxyphenethylamine, the
desired pyrrole products were observed, in which both phenyl and
methoxyphenyl groups were introduced into the product. Therefore,
we hypothesized that an imine might be a key intermediate for this
transformation, which was produced through dehydrogenation and
deamination from phenethylamine based on a previous réport.

In summary, we have discovered a unique method to construct
polysubstituted pyrroles from commercially available phenethyl-
amines. During this transformation, twelve protons and two nitrogen
atoms were removed. In addition, at least twelve bonds, including
two types of spC—H and C-N bonds, were cleaved and five new
bonds (two G-N bond, two C-C double bonds, and one—<C
single bond) were constructed in one pot. Further efforts to clearly
understand the reaction mechanism and explore the synthetic utility
of the reaction are underway.
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